Structure Reports Online

ISSN 1600-5368

Filipe A. Almeida Paz, Andrew D. Bond, Yaroslav Z. Khimyak and Jacek Klinowski*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: jk18@cam.ac.uk

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.042$
$w R$ factor $=0.109$
Data-to-parameter ratio $=7.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

A one-dimensional Co ${ }^{\text {II }}$ coordination polymer exhibiting an unusual conformation for 1,2-bis(4-pyridyl)ethane

The title compound, catena-poly[[[tetraaquacobalt(II)]- $\mu-1,2-$ bis(4-pyridyl)ethane- $\left.\kappa^{2} N: N\right]$ 2,6-naphthalenedicarboxylate], $\left\{\left[\mathrm{Co}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{O}_{4}\right)\right\}_{n}$ or $\left\{\left[\mathrm{Co}(\mathrm{BPE})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]-\right.$ (NDC) $\}_{n}[\mathrm{BPE}$ is 1,2 -bis(4-pyridyl)ethane and NDC is 2,6 naphthalenedicarboxylate], denoted CUmof-4, was synthesized under mild hydrothermal conditions. The crystal structure contains one-dimensional $\left[\mathrm{Co}(\mathrm{BPE})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}{ }^{2 n+}$ coordination polymers, which stack along the b direction, alternating with uncoordinated NDC anions. The Co atom is located on a centre of symmetry. Hydrogen bonds between the cationic polymer and the anions give rise to a threedimensional network.

Comment

We are interested in the synthesis of novel coordination compounds which contain both carboxylate and 4-pyridyl groups coordinated to metal centres (Almeida Paz et al., 2002). In particular, the use of 1,2-bis(4-pyridyl)ethane (BPE), which has increased flexibility compared to $4,4^{\prime}$-bipyridine (BPY), due to the two methylene $\left(-\mathrm{CH}_{2}-\right.$) groups between the 4-pyridyl rings, may lead to supramolecular isomerism (Hennigar et al., 1997).

The title compound, CUmof-4, (I), contains one crystallographically unique cobalt(II) centre, which occupies a centre of symmetry in $P \overline{1}$ and exhibits an almost ideal octahedral environment, composed of four water molecules in the equatorial plane and two trans-coordinated 4-pyridyl N atoms in axial positions (Fig. 1 and Table 1). A one-dimensional cationic $\left[\mathrm{Co}(\mathrm{BPE})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}{ }^{2 n+}$ coordination polymer runs along the c direction (Fig. 2, top), with BPE ligands establishing bridges between metal centres $\left[\mathrm{Co} 1 \cdots \mathrm{Co} 1^{\mathrm{i}}=\right.$ 13.529 (2) \AA; symmetry code: (i) $x, y, z-1]$. These onedimensional polymers alternate with NDC ions along the b direction (Fig. 1), with the anions being brought into close face-to-face contact with the BPE ligands (the average separation between adjacent aromatic rings is ca $3.5 \AA$) (Fig. 2). These interactions may account for the unusual conformation of the BPE ligand, within which both 4-pyridyl

Received 30 October 2002 Accepted 31 October 2002 Online 8 November 2002

Figure 1
View approximately along the a direction, showing alternation along b between one-dimensional cationic $\left[\mathrm{Co}(\mathrm{BPE})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}{ }^{2 n+}$ coordination polymers and NDC anions. Hydrogen bonds are drawn as dashed lines. The asymmetric unit of CUmof-4 is represented with ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Colour scheme: C grey, N blue, O blue, Co brown.

Figure 2
Perspective view of CUmof-4 along the b direction. $\mathrm{Co}^{\text {II }}$ centres are represented as octahedra, BPE ligands with filled bonds, and NDC ions with hollow bonds.
groups lie in the same plane. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}^{-}$hydrogen bonds connect the NDC anions to the coordinated water molecules, giving rise to a three-dimensional network (Fig. 3 and Table 2).

Experimental

All chemicals were obtained from commercial sources and were used without further purification. To a solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.476 \mathrm{~g}$, Aldrich $)$ in distilled water $(12.4 \mathrm{~g}), 1,2$-bis(4-pyridyl) ethane (BPE, 0.378 g , Aldrich), 2,6-naphthalenedicarboxylic acid $\left(\mathrm{H}_{2} \mathrm{NDC}\right.$, 0.437 g , Aldrich) and triethylamine (TEA, 0.388 g , Avocado) were added, and the mixture was stirred thoroughly for 1 h at ambient temperature. The suspension, with an $\mathrm{H}_{2} \mathrm{NDC}: \mathrm{Co}^{2+}:$ BPE:TEA: $\mathrm{H}_{2} \mathrm{O}$ ratio of 1.01:1.00:1.02:1.91:343, was placed in a Parr stainless steel teflon-lined vessel ($21 \mathrm{ml}, 50 \%$ full). The reaction was performed under autogeneous pressure and static conditions in a pre-heated oven at 418 K for 3 h . The vessel was then cooled slowly inside the oven to 298 K at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$ before opening. The crystalline product was collected by vacuum filtration and crystals of the title compound were manually separated and preserved in a portion of the autoclave solution.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{O}_{4}\right)$	$Z=1$
$M_{r}=529.40$	$D_{x}=1.616 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.3586(12) \AA$	Cell parameters from 6957
$b=7.0047(10) \AA$	reflections
$c=13.529(2) \AA$	$\theta=1.0-22.5^{\circ}$
$\alpha=88.463(11)^{\circ}$	$\mu=0.85 \mathrm{~mm}^{-1}$
$\beta=77.165(8)^{\circ}$	$T=180(2) \mathrm{K}$
$\gamma=68.056(9)^{\circ}$	Plate, colourless
$V=543.91(15) \AA^{\circ}$	$0.18 \times 0.12 \times 0.01 \mathrm{~mm}$

Figure 3
Perspective view of CUmof-4 along the c direction, showing the $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}^{-}$hydrogen-bonding network (dashed lines). H atoms have been omitted for clarity.

Data collection

Nonius KappaCCD diffractometer
Thin-slice ω and φ scans Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.943, T_{\max }=0.992$
3625 measured reflections
1374 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.052 P)^{2}\right. \\
& +0.0618 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.007 \\
& \begin{array}{l}
(\Delta / \sigma)_{\text {max }}=0.007{ }^{-3}, \rho_{\text {max }}=0.37 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

$R R\left(F^{2}\right)=0.109$
$S=1.20$
1374 reflections
173 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$.

Co1-O11	2.103 (3)	O311-C31	1.264 (5)
Co1-N21	2.111 (3)	O312-C31	1.265 (5)
Co1-O12	2.141 (3)		
$\mathrm{O} 11-\mathrm{Co} 1-\mathrm{N} 21$	92.29 (11)	$\mathrm{O} 11^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 12$	85.32 (11)
$\mathrm{O} 11^{\mathrm{i}}$ - $\mathrm{Co} 1-\mathrm{N} 21$	87.71 (11)	N21-Co1-O12	91.82 (11)
O11-Co1-O12	94.68 (10)	$\mathrm{N} 21^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 12$	88.18 (11)

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O11-H111A \cdots O312 ${ }^{\text {ii }}$	$0.82(2)$	$2.03(3)$	$2.846(4)$	$170(4)$
O11-H11B \cdots O311 $^{\text {(2 }}$	$0.82(2)$	$1.83(3)$	$2.654(4)$	$174(5)$
O12-H12A \cdots O312 $^{\text {i }}$	$0.83(2)$	$2.05(3)$	$2.867(4)$	$170(4)$
O12-H12B \cdots O311 $^{\text {iii }}$	$0.83(2)$	$1.96(3)$	$2.777(4)$	$170(4)$

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x,-1-y,-z$; (iii) $-1-x,-y,-z$.

metal-organic papers

H atoms bound to carbon were placed in calculated positions and allowed to ride during subsequent refinement, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. Aqua H atoms were located in difference Fourier maps and refined with a single isotropic displacement parameter common to all H atoms, and $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances restrained to ensure a reasonable geometry for the water molecules.

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: $X P$ in $S H E L X T L$; software used to prepare material for publication: SHELXTL.

We are grateful to the Portuguese Foundation for Science and Technology (FCT) for financial support through PhD scholarship No. SFRH/BD/3024/2000 (to FAAP), to the

Cambridge Oppenheimer Fund for a research fellowship (to YZK), and to the EPSRC for funding (to ADB) and financial assistance towards the purchase of the CCD diffractometer.

References

Almeida Paz, F. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. \& Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823-2828.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Blessing, R. H. (1995). Acta Cryst. A51, 33-58.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Hennigar, T. L., MacQuarrie, D. C., Losier, P., Rogers, R. D.. \& Zaworotko, M. J. (1997). Angew. Chem. Int. Ed. 36, 972-973.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

